Moscow, 8 October 2014

IS INNOVATION IN EDUCATION MEASURABLE?

Stéphan Vincent-Lancrin

Senior Analyst and Project Leader OECD Directorate for Education and Skills

Towards innovation-friendly ecosystems in education?

Centre for Educational Research and Innovation

New report

- 4 objectives:
 - Informative
 - Methodological
 - Heuristic
 - Prospective
- 2 approaches:
 - Innovation surveys
 - Organisational change surveys
- Databases / Coverage:
 - Reflex and Hegesco (19 EU countries + Japan)
 - PISA, TIMSS, PIRLS (broad international coverage)

• Introduction/implementation of a new or significantly improved...

- Product (object, tool)
- Process (pedagogy)
- Organisation
- Marketing method (external relations, pricing, etc.)

- New to the world
- New to the sector
- New to the organisation

innovation in education: the "innovation survey" approach

What kinds of questions does this approach allow us to answer?

- Is there more/less innovation in education than in other sectors?
- What kinds of innovation are more prevalent?
- Are there big differences in the differences across educational sectors?
- How do countries compare in terms of innovation in education?

Level of highly innovative jobs in education by country

Source: Measuring Innovation in Education (2014), based on REFLEX and HEGESCO data Source: OECD (Scoreboard on Innovation in Education), based on REFLEX and HEGESCO data

Percentage of highly innovative jobs, by sector (2005-2008)

Source: Measuring Innovation in Education (2014), based on REFLEX and HEGESCO data

Percentage of highly innovative jobs in product or service (2005-2008)

Source: Measuring Innovation in Education (2014), based on REFLEX and HEGESCO data

Percentage of highly innovative jobs in technology, tools or instruments (2005-2008)

Percentage of highly innovative jobs in knowledge or methods (2005-2008)

Source: Measuring Innovation in Education (2014), based on REFLEX and HEGESCO data

Highly innovative jobs in education and other sectors of the economy

Source: Measuring Innovation in Education (2014), based on REFLEX and HEGESCO data Source: OECD (Scoreboard on Innovation in Education), based on REFLEX and HEGESCO data

Source: Measuring Innovation in Education (2014), based on REFLEX and HEGESCO data

innovation in education: the "organisational change" approach

What kinds of questions does this approach allow us to answer?

- What does innovation look like in primary and secondary education?
- How much change has there been in a particular practice?
- What is the aggregate level of innovation? Where is it located?
- Are all countries implementing similar innovations at the same time?

What areas are covered by the Scoreboard?

Classroom changes

- Teaching style
- Class organisation
- Forms of student assessment
- Use of textbooks
- Availability and use of computers

Percentage of class time spent on lecturestyle presentations in 8th grade

Source: Measuring Innovation in Education (2014), based on TIMSS data (student reports)

Percentage of 8th grade students asked to relate maths learning to their daily life (teacher report)

Source: Measuring Innovation in Education (2014), based on TIMSS data (teacher reports)

Percentage of 8th grade students asked to relate maths learning to their daily life (student report)

Source: Measuring Innovation in Education (2014), based on TIMSS data (student reports)

Percentage of 8th grade students with computers available in science classrooms

Source: Measuring Innovation in Education (2014), based on TIMSS data (teacher reports)

Percentage of 8th grade science students using computers to practice skills and procedures at least sometimes

Source: Measuring Innovation in Education (2014), based on TIMSS data (teacher reports)

What areas are covered by the Scoreboard?

School changes

- Supply of special education
- Teacher collaboration
- External evaluation and feedback
- External relations (parents)

Percentage of 8th grade students whose science teachers have at least weekly peer discussions

Source: Measuring Innovation in Education (2014), based on TIMSS data (teacher reports)

Percentage of 8th grade students in school which currently use any incentives to recruit or retain science teachers

how much change counts as innovation

Change in use of non-test based, student assessment methods

Source: OECD Scoreboard on Innovation in Education

Effect sizes: example of changes in teachers' practice evaluation

	Change in external (inspector's) observations of teacher practices			Change in peer review evaluation of teachers' practices		
	8th grade		4th grade	8th grade 4th g		4th grade
	Maths 03-11	Science 03-11	03-11	Maths 03-11	Science 03-11	03-11
Australia	0,04	-0,02	0,40	0,40	0,38	0,41
Chile	0,54	0,50	m	-0,34	-0,30	m
England	0,45	0,49	0,22	0,12	0,06	0,18
Germany	m	m	0,17	m	m	0,12
Hungary	0,16	0,17	0,17	0,10	0,13	0,21
Israel	0,68	0,52	m	0,44	0,38	m
Italy	0,05	-0,03	0,05	-0,23	-0,30	-0,21
Japan	0,01	0,03	0,25	0,16	0,16	0,25
Korea	0,37	0,29	m	0,84	0,82	m
Netherlands	m	m	0,30	m	m	0,20
New Zealand	0,25	0,24	0,53	0,50	0,53	0,49
Norway	0,22	0,21	0,74	-0,24	-0,36	-0,29
Ontario	0,53	0,51	0,50	0,19	0,10	0,24
Quebec	0,41	0,43	0,47	-0,13	-0,19	-0,43
Slovak Republic	m	m	0,19	m	m	-0,09
Slovenia	-0,32	-0,38	-0,40	0,10	0,15	0,28
Sweden	0,18	0,16	-0,08	0,34	0,36	0,19
Turkey	-0,16	-0,08	m	-0,31	-0,34	m
United States	0,41	0,39	0,20	0,29	0,28	0,23
OECD	0,25	0,21	0,29	0,18	0,15	0,13
OECD (absolute average)	0,30	0,28	0,35	0,28	0,28	0,28

how much innovation in school education that makes

Composite innovation index (primary and secondary education)

School and classroom level composite innovation indices for period 2000-2011

Classroom change

School change

Russian top innovations

- More use of textbooks as primary resources in secondary science classrooms
- More use of same-ability grouping in secondary education
- More use of computers as reference resources
- More Internet availability in primary and secondary classrooms

- More use of incentives for recruiting and retaining teachers
- More use of student assessments for monitoring school progress over time
- More remedial mathematics and science education in primary schools
- More enrichment education in primary schools
- More parental service on school committees

preliminary associations between innovation and educational outcomes to reflect upon

Overall Innovation and change in 8th grade mathematics teacher satisfaction (2003-2011)

Source: OECD Scoreboard on Innovation in Education

Overall education innovation and 8th grade mathematics outcomes

Source: Measuring Innovation in Education (2014)

Overall education innovation and 8th grade mathematics outcome trends

Source: Measuring Innovation in Education (2014)

a few remarks

Answers to questions not raised yet

- Why are the two measures not consistent (ex: Hungary)?
- How can Indonesia rank second and Massachussets, last?
- How can the use of textbook be an innovation?
- Why are some small changes sometimes considered an innovation?
- How do « innovative » practices relate to « alternative » practices?

conclusions

- What we propose:
 - Develop an instrument for a matched survey (that could ultimately be linked to longitudinal information systems)
 - Cover 3 areas: instructional practices, establishment organisation, external relations
 - Mix subject- and object-based approaches
 - Privilege the organisational change method

- To see whether awaited change follows reform
- To see whether changes are coherent with what we know about « good practices »
- To be able to relate change in practices to outcomes
- To better understand innoation
- To put innovation on the education policy agenda

Stephan.Vincent-Lancrin@oecd.org

THANK YOU www.oecd.org/edu/innovation

