• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Study by IOE Expert Ivan Smirnov Published in International Academic Journal


A paper co-authored by IOE expert Ivan Smirnov, which explores how academic achievement shapes students’ peer relationships, and namely friendship networks as suggested by social media data, has recently been published on PLOS One.


Abstract

Homophily, the tendency of individuals to associate with others who share similar traits, has been identified as a major driving force in the formation and evolution of social ties. In many cases, it is not clear if homophily is the result of a socialization process, where individuals change their traits according to the dominance of that trait in their local social networks, or if it results from a selection process, in which individuals reshape their social networks so that their traits match those in the new environment. Here we demonstrate the detailed temporal formation of strong homophily in academic achievements of high school and university students. We analyze a unique dataset that contains information about the detailed time evolution of a friendship network of 6,000 students across 42 months. Combining the evolving social network data with the time series of the academic performance (GPA) of individual students, we show that academic homophily is a result of selection: students prefer to gradually reorganize their social networks according to their performance levels, rather than adapting their performance to the level of their local group. We find no signs for a pull effect, where a social environment of good performers motivates bad students to improve their performance. We are able to understand the underlying dynamics of grades and networks with a simple model. The lack of a social pull effect in classical educational settings could have important implications for the understanding of the observed persistence of segregation, inequality and social immobility in societies.

Read full paper